Predictive model applicable to water debinding of complex shape parts injection molded using commercial feedstock

Vedi Dupont
C. Delmotte, J.P. Erauw, F. Cambier (1)
T. Boulanger, C. Emmerechts, B. Guerra, E. Beeckman (2)

(1) BCRC, Belgian Ceramic Research Centre
4, Avenue Gouverneur Gomez, 7000 Mons, Belgium.

(2) SIRRIS
12, rue Bois Saint Jean, 4102 Seraing, Belgium.

Contents

- Introduction
 - CIM (Ceramic Injection Molding)
 - Definition of feedstocks
 - Goal & approach of the model

- Results and discussion
 - Influence of temperature, and geometry during a water debinding step
 - Evolution of the microstructure
 - Influence of water debinding conditions on sintering behavior

- Conclusion & perspectives
Ceramic Injection Molding

Industrial sector's concern: shaping of complex advanced ceramics parts
- Selection of competitive forming method(s)
- Low cost of processing and high end-product performance

CIM (CERAMIC INJECTION MOLDING) is more and more present on world markets.

Advantages:
- Suited for the production of complex ceramic parts with precision, speed, and repeatability.
- Less assembling and/or manipulation steps.

- 4 successive steps
 1. Plasticizing
 2. Injection
 3. Strengthening
 4. Ejection

What is a feedstock?

In the past:
- Formulation by ceramic producer
 - Proportion powder-additives
 - Nature of binder & plasticizer
 - Nature of powder
 - Nature of adjuvants
 - Composition and behavior of feedstock clearly known

Today:
- Existence of commercial feedstocks
 - Ready-to-use
 - Composition unknown
 - No detailed technical data
 - Composition and behavior of commercial feedstocks "unknown"
Disadvantage of CIM

Existence of a critical step:

Removal of the large amount of additives

Several debinding methods of CIM parts

- Classical thermal debinding
- Supercritical or catalytic debinding
- Solvent debinding
- Water debinding

- low cost
- environmental friendly

Recommendations of the supplier:

Debinding step
- 24h in water (25°C)
- thermal (HR: 20 to 2 °C / h)

Sintering
- 1600°C (HR: 130 °C / h)

Sound part

80*20*5 mm³

80*20*2 mm³

Damaged part
Swelling & Cracking

Necessity to predict the time needed to remove a maximum fraction of the soluble binder

As a function of geometry, temperature and immersion duration in water
Previous works

Lin & German:
- For an infinite geometry, the fraction of soluble binder remaining, \(\ln \left(\frac{1}{F} \right) = f(t) \) with \(t \) immersion time

Shivashankar & German:
- Extension of previous model for a finite geometry
 - Introduction of a new parameter: \(\frac{1}{\psi} \) (= \(S / V \)) length scale

\[
\ln \left(\frac{1}{F} \right) = \frac{\pi^2 D t}{\psi^2} + K
\]

Goal & approach

Elaborate a predictive model of the water debinding of complex molded parts, to ease thermal post treatments

Parameters:
- Geometry
- Immersion time
- Temperature

Weight losses:
- Measured
- Calculated

Model validation:
- Post-treatments
Experimental procedure

- **Preparation of samples**
 - Injected at 160°C (Arburg 350-90 A270D), Alumina feedstock (Al₂O₃).
 - Debound in stirred water at 25°C, 40°C et 55°C for varying immersion times.
 - Dried at 50°C during 48h.

Simple shapes

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>Bars</th>
<th>Cylinders</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>1.477</td>
<td>0.997</td>
</tr>
<tr>
<td>2.6</td>
<td>0.748</td>
<td>0.917</td>
</tr>
<tr>
<td>3.6</td>
<td>2.250</td>
<td>0.983</td>
</tr>
</tbody>
</table>

Wide range of the length scale

- 60x10xe
- Ø16xe

Real complex shapes

<table>
<thead>
<tr>
<th>Component</th>
<th>Heat sink</th>
<th>Nozzle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/Ψ</td>
<td>0.731</td>
<td>0.822</td>
</tr>
</tbody>
</table>

Results and discussion
Influence of the temperature

- Estimation of maximum weight loss in water:
 \[W_{\text{max}} \text{ (feedstock)} \approx 6\% \]

Fraction of soluble binder remaining in the green \((F)\) is expressed by:
\[
\ln \frac{1}{F} = \frac{\pi^2 D t}{\Psi^2} + K
\]

With \(\Psi = V / S \)

Influence of the temperature

Plot of \(\ln(1/F) \) against \(t/\Psi \) at different temperatures: \(\text{Al}_2\text{O}_3 \)

- \(1/\Psi = 0.748 \)

2 stages observed:

1. **Dissolution controlled stage**
 - Binder just near the sample surface can dissolve quickly.
 - \(R_{\text{diss}} \): Dissolution of binder at binder water interface.

2. **Diffusion controlled stage**
 - Binder water interface moves inwards in the sample. Creation of a porous network within the green body.
 - \(R_{\text{diff}} \): Diffusion of the solutes in the porous paths.

Influence of the geometry

Evolution of Fraction binder removed for different values of \(1/\Psi \):
\(\text{Al}_2\text{O}_3 \) at 40°C

- If \(1/\Psi \) (S/V) is high
 - Thin parts
 - Large contact surface between soluble binder and solvent (water)
 - Kinetic of binder extraction is faster
Influence of the geometry

Plot of $\ln(1/F)$ against $1/\Psi$ for different values of $1/\Psi$:
Al_2O_3 at 40°C: Diffusion controlled stage

- Diffusion controlled stage ($T = 40°C$)

- Inter-diffusion coefficient

Using the Shivashankar-German model,

<table>
<thead>
<tr>
<th>$1/\Psi$ range</th>
<th>0.983 - 0.917</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-diffusion coeff D (cm2·s$^{-1}$)</td>
<td>6.16×10^{-5}</td>
</tr>
</tbody>
</table>

Elaboration of predictive model

- Inter-diffusion coefficient D:
 follows an Arrhenius law

\[D = D_0 \exp\left(\frac{-E_{\text{act}}}{RT}\right) \]

as observed K_2 depends on temperature

\[K_2 (T) = 0.0028 T - 0.673 \]

<table>
<thead>
<tr>
<th>Stage</th>
<th>D_0 (cm2·s$^{-1}$)</th>
<th>E_{act} (kJ·mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion</td>
<td>1.65×10^5</td>
<td>8.38</td>
</tr>
</tbody>
</table>
Validation of the predictive model

\[\frac{1}{F} = 5.94 \cdot 10^{-2} \cdot \Pi^2 \cdot \exp\left(\frac{8380}{RT}\right) \cdot \left(\frac{1}{\Psi}\right) + (0.0028T - 0.673) \]

Heat sink

\[1/\Psi = 0.731 \]

Nozzle

\[1/\Psi = 0.822 \]

Microstructure evolution

30 min

50 h

Cross section of specimens partially water debinded at 40°C for 30 min & 50 h (1/\Psi = 0.748).

The « Shrinking Core » can be clearly observed.
Sintering behavior

<table>
<thead>
<tr>
<th>Specimens</th>
<th>Apparent density (g/cm³)</th>
<th>1/f</th>
<th>Density (supplier's data) (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1h / 40°/ 3.6</td>
<td>3.61</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>1h / 40°/ 2.6</td>
<td>3.68</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>1h / 40°/ 1.6</td>
<td>3.80</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>50h / 40°/ 3.6</td>
<td>3.88</td>
<td>2.38</td>
<td></td>
</tr>
<tr>
<td>50h / 40°/ 2.6</td>
<td>3.93</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td>50h / 40°/ 1.6</td>
<td>3.93</td>
<td>11.1</td>
<td></td>
</tr>
</tbody>
</table>

- Water debinding at 40°C for 1 and 50 h
- Thermal debinding (HR : 1°C / min)
- Sintering at 1600°C (HR : 2°C / min) for 2 h

Conclusion

- The water debinding process depends on:
 - the immersion time t
 - the longer the immersion time t, the larger the amount of removed soluble binder
 - the temperature T
 - the evolution of dissolution and diffusion coefficient
- the length scale (1 / Ψ)
 - the higher the length scale (1 / Ψ), the shorter the immersion time needed

- Existence of two stages:
 - Dissolution controlled / Diffusion controlled
 - Creation of an interconnected porous network, facilitating subsequent thermal extraction of the insoluble binder
Conclusion

- Elaboration & validation of the predictive model:

\[
\frac{1}{F} \ln\left(\frac{1}{F}\right) = 5.94 \times 10^{-2} F^2 \cdot 2.11 \cdot \exp\left(-\frac{8380}{RT}\right) \cdot \left(\frac{t}{\gamma}\right) + (0.0028T - 0.673)
\]

- Sintering (preliminary) of simple specimens:
 - \(1/F < 1/F_{\text{lim}}\) → damaged parts
 - \(1/F > 1/F_{\text{lim}}\) → sound parts \((d = 3.93 \text{ g/cm}^3)\)

Methodology applicable to any kind of feedstocks

Perspectives

- Estimate the minimal value of fraction of soluble binder remaining in the green \((1/F)\) to obtain sound parts irrespective of geometry

- Optimize the thermal debinding step depending on this previous value \((1/F)\)
Acknowledgement

We thank the DGO6 of the “Service public de Wallonie” for its financial support (grant number 0716715).

My colleagues
Cathy Delmotte
Jean-Pierre Erauw

SIRRIS team
T. Boulanger, C. Emmerechts, B. Guerra, E. Beeckman

Questions

Thank you for your attention